§3. Renormalization of Gauge Theories
Xast time: symmetry of eff. action

$$O = \int d^{4}y \langle F^{n}(y) \rangle_{q_{X}} \frac{\$T[X]}{\$X^{n}(y)}$$

where $F^{n}(y)$ is generated of symmetry
of original action:
 $\chi^{n}(y) \mapsto \chi^{n}(y) + \varepsilon F^{n}[Y;X]$
Now we apply this to BR3T invariance
of action $I[X]$ for non-abelian gauge theories:
 $\int d^{4}x \langle \Delta^{n}(x) \rangle_{q_{X}} \frac{\$T[X]}{\$X^{n}(y)} = O$ (1)
where the change in $\chi^{n}(y)$ under a BRST
transformation with infitesimal fermionic
parameter θ is
 $\$g_{0}\chi^{n}(x) = \theta \Delta^{n}(x)$
and $\langle \dots \rangle$ denotes the vacuum expectation
value in the presence of a current \Im_{X} .
 \longrightarrow since BRST trf. is non-linear, eq.

(1) does not tell up that eff. action is invariant under it.

-> introduce modified effective action

$$\Gamma[\pi, K] = W[{}^{*}_{\pi,K,K}K] - \int d^{*}_{\pi} x^{*}(x) {}^{*}_{\pi,K,n}(x)$$
where W is here calculated with gauge-field
action I + $\int d^{*}_{\pi} \Delta^{n} K_{n}$:

$$e^{iW[{}^{*}_{\pi},K]} = \int [\prod_{n \in X} dx^{*}(x)] exp(iI + i \int d^{*}_{\pi} \Delta^{n} K_{n} + i \int d^{*}_{\pi} x^{*}_{\pi})$$
and $\int_{\pi,K}$ is the current satisfying:

$$\frac{S_{R} W[{}^{*}_{\pi}]K]}{S J_{n}(S)} \Big|_{J} = \chi^{*}(x).$$
(2)
K_n here have the same fermionic/bosonic
statistics as Δ^{n} , which is opposite to χ^{n} .
 \longrightarrow since $\Delta^{n}(x)$ are BRST-invariant
(BRST trf. is nilpdent), we get
 $\int d^{4}_{\pi} \langle \Delta^{n}(x) \rangle_{J,K} = \frac{S_{L} T[\pi,K]}{S \chi^{n}(k)} = 0,$
where $\langle \cdots \rangle_{J,K}$ denotes a vacuum expectation
value in the presence of the current J
and the external fields K:
 $\langle O[\pi]_{\lambda_{J,K}} = \frac{\int [\prod_{n \in M} dx^{*}(s)] O(x) exp(iI + i \int d^{*}_{n} \Delta^{*} K_{n} + i \int d^{*}_{n} x^{*} J_{n})}{\int [\prod_{n \in M} dx^{*}(s)] exp(iI + i \int d^{*}_{n} \Delta^{*} K_{n} + i \int d^{*}_{n} x^{*} J_{n})}$
(3)

We can reexpress
$$\langle \Delta^{m}(k) \rangle_{3,k}$$
 as follows:

$$\frac{S_{R} T[\tilde{r}_{1}, K]}{SK_{n}(k)} = \frac{S_{R} W[3, k]}{SK_{n}(k)} \Big|_{3=3\pi k} \int d^{4}y \frac{S_{R} W[3, k]}{S_{m}(k)} \Big|_{3=3\pi k} \frac{S_{R} W[3, k]}{SK_{n}(k)} - \int d^{4}y \chi^{m}(y) \frac{S_{R} J_{RK} m(y)}{SK_{n}(x)}$$
Using equation (2) and (3), we get
$$\frac{S_{R} T[\tilde{x}, K]}{SK_{n}(x)} = \frac{S_{R} W[3, k]}{SK_{n}(x)} \Big|_{y=3\pi k} - \langle \Delta^{m}(x) \rangle_{y,K}$$
Now equation (1) becomes
$$\int d^{4}x \frac{S_{R} T[\tilde{x}, K]}{SK_{n}(x)} \frac{S_{L} T[\tilde{x}, K]}{S\chi^{m}(x)} = 0$$
"Zinn-Justin equation"
As exchange of fields and anti-fields
leools to a minus sign,
for examaple $\frac{S_{L}(\omega, \omega_{2})}{S\omega_{1}} = -\frac{S_{R}(\omega, \omega_{2})}{S\omega_{1}} for
w, and we fermionic, this can be
vewnitten as
$$(T, T) = 0, \quad \text{where} \qquad (T)$$
(F, G) = $\int d^{4}x \frac{S_{R} F[\tilde{x}, K] S_{L} G[\tilde{x}, K]}{SX^{m}(x)} \int d^{4}x \frac{S_{R} F[\tilde{x}, K]}{SX^{m}(x)} \frac{S_{L} G[\tilde{x}, K]}{SK_{n}(x)} - \int d^{4}x \frac{S_{R} F[\tilde{x}, K]}{SX^{m}(x)} \frac{S_{L} G[\tilde{x}, K]}{SX^{m}(x)} \int d^{4}x \frac{S_{R} F[\tilde{x}, K]}{SX^{m}(x)} \frac{S_{L} G[\tilde{x}, K]}{SX^{m}(x)} = 0$$

Question: What is the form of the effective
action
$$T[X,K]\Big|_{K=0} ?$$

 $T[X,K]$ is complicated functional of both
 x and K
 \rightarrow write the action $S[X,K] = T[X] + \int d^{1}x \Delta^{n}K_{n}$
as $S[X,K] = S_{R}[X,K] + S_{00}[X,K]$
 I
renormalized T
 $renormalized form loop graphs$
 \rightarrow both S_{R} and S_{00} must have symmetries
of original action
 \rightarrow Do the infinite parts of T share the
same symmetries ?
To answer this question, we expand T in
 $loop$ order:
 $T[X,K] = \sum_{N=0}^{\infty} T_{N}[X,K]$.
 $\rightarrow eq. (4)$ becomes at N loop order
 $\sum_{N \in 0}^{N} (T_{N'}, T_{N-N'}) = 0$ (5)
Leading term of (5) is $T_{0}[X;K] = S_{R}[X;K] - finite$

The fields
$$A^{Kn}$$
, w^{κ} , and $w^{\kappa*}$ all have
dimensionalities $+1 \longrightarrow \dim(K_n) = +2$
Spin 1/2 matter fields \mathcal{F}_e have dim \mathcal{F}_2
 $\longrightarrow \dim(K_n) = \mathcal{F}_2$
Thus $T_{N,\infty}[\mathcal{K}, K]$ is at most quadratic in K_n
Zet us now come to ghost numbers:
If \mathcal{X}^n has ghost number $\mathcal{Y}_n + 1$
 \longrightarrow ghost $(K_n) = -\mathcal{Y}_n - 1$

We have:
• qhost
$$(A^{K,m}) = 0 \implies qhost (K_A) = -1$$

• qhost $(\gamma \ell) = 0 \implies qhost (K_Y) = -1$
• qhost $(\omega^K) = +1 \implies qhost (K_w) = -2$
• qhost $(\omega^{K*}) = -1 \implies qhost (K_w^*) = 0$
Since $qhost (T_{N,\infty} [Y, K]) = 0$, we have only
at most linear terms in K_u .
(Also linear in $K_a^* : \frac{S_L T_{N,\infty} [X, K]}{SK_a^*} = \langle \Delta^* \}_{T,K}^{*} = -h^K$
since $\Delta^{**} = -h^K$ and independent of all K_u)
 $\longrightarrow T_{N,\infty} [X, K] = T_{N,\infty} [X, 0] + \int d^4 x 2h^* [X; x] K_u(x)$

Recall that

$$S_{R}[x, k] = S_{R}[x] + \int d^{4}x \Delta^{n}[x, x]K_{n}(x)$$
Thus equation 6) becomes
(7) $\int d^{4}x \left[\Delta^{n}[x, x] \frac{\delta_{L}T_{N,\infty}[x, o]}{\delta x^{n}(x)} + \mathcal{D}_{N}^{n}[x, x] \frac{S_{L}S_{R}[x]}{\delta x^{n}(x)} \right] = 0,$
and
(8) $\int d^{4}x \left[\Delta^{n}(x, x) \frac{S_{L}\mathcal{D}_{N}^{n}(x, x)}{\delta x^{n}(x)} + \mathcal{D}_{N}^{n}(x, x) \frac{S_{L}\Delta^{n}(x, y)}{\delta x^{n}(x)} \right] = 0$
These equations can be put into a nice
form by defining
 $T_{N}^{(E)}[x] = S_{R}[x] + \mathcal{E}T_{N,\infty}[x, o],$
and $\Delta_{N}^{(E)m}(x) = \Delta^{n}(x) + \mathcal{E}\mathcal{D}_{N}^{n}(x),$
with \mathcal{E} infinitesimal.
Then eq. (7) just says that $T_{N}^{(E)}[x]$
is invariant under the trf.
 $\chi^{n}(x) \to \chi^{n}(x) + \Theta \Delta_{N}^{(E)n}(x),$ (*)
and eq. (8) implies that (*) is "nilpdent"
(using invariance under ariginal BRST trf.)